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Abstract
We review recent developments in quantum scattering from mesoscopic
systems. Various spatial geometries whose closed analogues show diffusive,
localized or critical behaviour are considered. These are the features that cannot
be described by the universal random matrix theory results. Instead, one has
to go beyond this approximation and incorporate them in a non-perturbative
way. Here, we pay particular attention to the traces of these non-universal
characteristics, in the distribution of the Wigner delay times and resonance
widths. The former quantity captures time-dependent aspects of quantum
scattering while the latter is associated with the poles of the scattering matrix.

PACS numbers: 03.65.Nk, 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum mechanical scattering in systems with complex internal dynamics has been a subject
of intensive research activity for a number of years. This interest was motivated by various areas
of physics, ranging from nuclear [1], atomic [2] and molecular [3] physics, to mesoscopics
[4], quantum chaos [5, 6] and classical wave scattering [7, 8]. Recently, the interest in this
subject was renewed due to technological developments in quantum optics associated with the
construction of new types of lasers [9, 10] and experimental investigation of atoms in optical
lattices [11].

The most fundamental object characterizing the process of quantum scattering is the
unitary S-matrix relating the amplitudes of incoming waves to the amplitudes of outgoing
waves. The recent advances in mesoscopic physics and quantum chaos led to a fast
development of powerful theoretical techniques which allow us to understand the statistical
properties of the S-matrix. At present, there are two complementary theoretical tools employed
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to calculate statistical properties of the S-matrix, namely the semiclassical and the stochastic
approach. The starting point of the first is a representation of the S-matrix elements in terms of
a sum of classical orbits [5, 6] while the latter exploits the similarity with ensembles of random
matrices [12]. At the same time, recent experimental progress allowed a direct comparison
of the theoretical predictions with actual experimental results. Microwave experiments (see
[13, 14] and references therein) offer a unique possibility of checking even details of the
existing theories in cases where this is hardly possible by other methods, while they raise new
challenging questions (see, for example, [13–15]).

Apart from the study of the distribution of the S-matrix elements, resonance widths and
Wigner delay time distributions also gained much attention. The latter quantity captures the
time-dependent aspects of quantum scattering. It can be interpreted as the typical time an
almost monochromatic wave packet remains in the interaction region. Resonances are defined
as poles of the S-matrix occurring at complex energies En = En − i

2�n, where En is the
position and �n is the width of the resonance. They correspond to the ‘eigenstates’ of the
open system that decay in time due to the coupling to the ‘outside world’ and they are related
to conductance fluctuations and current relaxation [16]. For chaotic systems in the ballistic
regime, random matrix theory (RMT) is applicable, and the distributions of resonance widths
P(�) and Wigner delay times P(τ ) are known. A review of the RMT results can be found in
[12] (see also [6]).

In this contribution, we aim at giving an overview of the recent developments in
scattering from open samples in conditions where RMT is not applicable and deviations from
‘universality’ due to the appearance of localization are apparent. Although our presentation
is focused on random media, one always has to keep in mind that these results are also valid
for dynamical systems with chaotic classical limit. Despite the fact that these systems are
deterministic (in contrast to random media where randomness is ‘built up’ with the system)
localization occurs due to complicated interference effects created by the underlying classical
chaotic dynamics, and for this reason it is termed dynamical localization [17].

The observables that will be in the focus of our presentation are the distributions of
resonance widths and delay times. We consider various spatial geometries and models whose
closed analogues show features such as diffusion, criticality or localization. A short overview
of localization theory and the definitions of the various regimes are given in section 2. In
section 3 we present the mathematical formalism associated with the scattering process, and
define the quantities of interest. In section 4 we review the consequences of localization in the
resonance width distribution. The corresponding results for the delay times are analysed in
5. Finally, in section 6 we present some results for quasi-periodic systems at criticality. Our
conclusions are given in section 7.

2. Various regimes in localization theory: a brief overview

Localization of waves has always been among the most difficult yet most fascinating topics
in the study of wave propagation in disordered media. The first studies dealt with infinite
media, showing that localization is always achieved in one and two dimensions but that a
minimum amount of disorder is required in dimensions larger than 2 [18–20]. Its main feature
is that the eigenfunctions of a disordered medium in the localized regime are characterized by
an exponential decay in space, i.e., |�n(r)| ∼ exp(−|r − r0|/ξ), where ξ is the localization
length. A direct consequence is that transmission is inhibited and the system behaves as an
insulator.

The fingerprints of localization in various quantities associated with the closed systems
have been identified and quite well understood. Detailed numerical and theoretical studies
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gave a clear picture how the statistical properties of these quantities change as the disorder
strength increase (for a recent review, see [21] and references therein). Let us consider a
quantum dot. For weak disorder, such that the mean free path lmean is larger than the system
size L, the dot can be considered clean and the dynamics across its length is ballistic. We
will further assume that the ‘cavity’ defining the dot has an irregular shape and therefore the
ballistic motion is chaotic. In these systems, the relevant time scale is the ergodic time τerg,
which is of the order of the time of flight across the sample. The related energy scale is known
as Thouless energy and it is given by ETh = h̄/τerg. One can further define a dimensionless
conductance as the ratio g = ETh/� where � is the mean level spacing. The condition
g � 1 guarantees that a large number of internal modes are mixed by the chaotic scattering
taking place at the irregular boundary. In the limit where g → ∞, the predictions of random
matrix theory (RMT) were shown to describe accurately the statistical properties of various
observables related with the ballistic chaotic dot. For example, the eigenstates are extended
all over the system, the eigenvalue spacing distribution follows, with a good accuracy, the
famous Wigner surmise [22, 23] etc.

As the disorder increases the system becomes diffusive. This regime is characterized by
the condition that the system size L is larger than the mean free path lmean but still smaller than
the localization length ξ , i.e., lmean � L � ξ . Using the powerful sigma-model approach it
was explained how the deviations from the RMT results arise [21, 24]. Detailed numerical
experiments [25–27] verified the theoretical predictions. These deviations are particularly
strong at the far ‘tails’ of the distribution of the eigenfunction intensities as well as of some
related quantities and are signatures of the underlying classical diffusive dynamics [25–27].
They were shown to be related to anomalously localized states termed pre-localized states.
In [25, 26] it was found that pre-localized states are also present in quantum systems with
deterministic chaotic dynamics. As far as the spectral correlations are concerned it has
been shown that there are large deviations above the Thouless energy ETh = h̄/τTh where
τTh = h̄D/L2 is the time to diffuse through the system with diffusion constant D [23, 29]. The
Thouless conductance g is related to the latter as g = DLd−2 where d is the dimensionality
of the system. Rapid development in microwave techniques allowed for a direct observation
of some of these predictions in microwave experiments [30–33].

The deviations of the level and eigenfunction statistics from their RMT form strengthen
with increasing disorder and become especially pronounced in the localization regime . In
this regime, inhibition of wave diffusion due to interference of multiple scattering waves takes
place [18]. The resulting scenario depends strongly on the dimensionality of the sample and
the disorder strength. It turns out that the eigenstates are exponentially localized in low-
dimensional systems even for arbitrary weak disorder. As a matter of fact the localization
regime is defined through the condition that L < ξ . One of the consequences following from
this fact is the prediction that the conductance of a sample goes exponentially to zero with the
increase in its length and the sample behaves as an insulator. In contrast, disordered single-
particle systems in more than two dimensions exhibit a reacher behaviour. If the disorder is
weak enough there is no localization and the system has a metallic behaviour while for strong
disorder strength we recover the localization regime. The transition point from a metallic to
localized behaviour is of special interest and is called metal–insulator transition (MIT).

The MIT where the phase transition from localized to extended states occurs is
characterized by remarkably rich critical properties. In particular, the level spacing distribution
acquires a scale-independent form [28] while other level statistical measures show distinct
critical features [21, 29, 34]. At the same time, the eigenfunctions show strong fluctuations
on all length scales and represent multi-fractal distributions [21, 24, 35–37]. As a matter of
fact, a connection between multi-fractality and statistical properties of eigenvalues at MIT has
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been recently established [34]. The multi-fractal structure of the eigenfunctions is usually
quantified by studying the size dependence of the so-called participation numbers (PN)

Nq =
(∫

|ψ(r)|2q dr
)−1

∝ L(q−1)Dq (1)

where L is the linear size of the system and Dq are the multi-fractal dimensions of the
eigenfunction ψ(r). Among all the dimensions, the correlation dimension D2 plays the most
prominent role. The corresponding PN is roughly equal to the number of nonzero eigenfunction
components, and therefore is a good and widely accepted measure of the extension of the states.
At the same time D2 manifests itself in a variety of other physical observables. As examples,
we mention the statistical properties of the spectrum [21, 34], the anomalous spreading of a
wave packet, and the spatial dispersion of the diffusion coefficient [38].

At the same time a considerable effort was made to understand the shape of the
conductance distribution P(g) at MIT [16, 39, 40]. However, it is still unclear whether the
limiting P(g) is entirely universal, i.e., dependent only on the dimensionality and symmetry
class, as required by the 1-parameter scaling theory of localization [20]. The latter is one of
the major achievements in the long history of studying the MIT. Its basic assumption is that the
change of the typical conductance g with the sample size L depends only on the conductance
itself, and not separately on energy, disorder, size and shape of the sample, the mean free
path etc.

Although many studies have been devoted to the analysis of eigenfunctions and
eigenvalues and of conductance, the properties of resonances, and delay times were left
unexplored until recently. Nevertheless, it was clear from the very beginning that their
statistical properties depend strongly on the nature of the states of the finite system ‘in
isolation’. Thus Anderson localization must leave its fingerprints in these quantities which
after all reflect the ‘leakage’ of the waves to the leads, through the sample boundaries. In the
next sections, we will review the outcome of these studies and their deviations from the RMT
predictions due to non-universal features.

3. Quantum scattering: basic concepts

The scattering S-matrix relates the outgoing wave amplitudes to the incoming wave amplitudes.
Assuming M open channels, one can show that the M × M scattering matrix can be written in
the form [1]

S(E) = 1 − 2iπV † 1

E − Heff
V Heff = H0 − iπV V †. (2)

Here, H0 stands for an N-dimensional self-adjoint Hamiltonian describing the closed
counterpart of the system under consideration, E stands for the energy of the incoming waves,
and V is an M × N operator that contains matrix elements coupling the internal motion to
one of the open M channels. In principle, the matrix elements of the operator V depend on
energy. However, since this dependence is very weak (far away from channel thresholds), we
can ignore it and consider Vi,j to be energy independent. 1 is the M × M unit matrix. For
a detailed derivation of the scattering matrix for the case of a tight-binding model, see [41]
while for a chaotic cavity, see [42]. It is easy to verify that form (2) ensures the unitarity
of the scattering matrix, i.e., S†S = 1, provided the energy E takes only real values. When
one allows the energy parameter to have a nonzero imaginary part, the S-matrix unitarity is
immediately lost. Having Im E > 0 corresponds to the physical situation of uniform damping
inside the system [8, 43] and it is responsible for the losses of the outgoing flux of the
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particles as compared to the incoming flux. The ‘dual’ case Im E < 0 corresponds to uniform
amplification. The balance between the two fluxes is precisely the physical mechanism behind
the S-matrix unitarity.

The poles of the scattering matrix S are associated with the formation of resonance states.
They represent long-lived intermediate states to which bound states of a closed system are
converted due to coupling to continua. Due to causality, they are located in the lower half
plane, i.e., En = En − i

2�n, where En and �n are the position and the width of the resonances,
respectively. They are solutions of the following secular equation,

det(E − Heff(E)) = 0. (3)

where the resonance width � is inversely proportional to the lifetime of the corresponding
resonance state. From equations (2) and (3) it is clear that the formation of resonances is
closely related to the internal dynamics inside the scattering region which is governed by H0.

Another quantity that will be in the focus of this contribution is the Wigner delay time
[44] and its variations (for an overview on the various definitions of delay times and their
physical importance, see [45]). It captures the time-dependent aspects of quantum scattering.
It can be interpreted as the typical time an almost monochromatic wave packet remains in the
interaction region. Formally, the Wigner delay time τW is related to the energy derivative of
the total phase of the unimodular S-matrix

τW (E) = 1

M
Tr Q(E), Q(E) = −ih̄S†(E)

dS(E)

dE
(4)

where Q(E) is called the Wigner–Smith time delay matrix [44]. Its eigenvalues τq are
called proper delay times, and correspond to the time the particle dwells at a particular
channel q = 1, . . . , M . Alternatively, one can also define the partial delay times τ

p
q as the

energy derivatives of the eigenphases {θq}, q = 1, . . . ,M of the unimodular S-matrix, i.e.,
τ

p
q = ∂θq/∂E [12]. Beyond the one-channel case, proper and partial delay times differ,

although the sum of partial/proper delay times over all M scattering channels is always equal
and yields the Wigner delay time.

4. Resonances

In this section, we analyse the distribution of resonances P(�). The properties of resonances
are of fundamental as well as technological interest. One can show that they determine the
conductance fluctuations of a quantum dot in the Coulomb blockade regime [46], or the
current relaxation. The latter study constitutes a fundamental source of physical information
for systems which are coupled to a continuum via metallic leads or absorbing boundaries.
While the radioactive decay is a prominent paradigm, more recent examples include atoms in
optically generated lattices and billiards [47, 48], the ionization of molecular Rydberg states
[49], photoluminescence spectroscopy of excitation relaxation in semiconductor quantum dots
and wires [50], and pulse propagation studies with electromagnetic waves [51].

From the theoretical point of view, one can approach the problem of current relaxation
by evaluating the survival probability P(t) to remain inside the sample. For a narrow wave
packet which is initially localized near the boundary of an open sample of volume 


P(t) =
∫




|�(t, r)|2 dr ∼
∫ ∞

0
d� �P(�) exp(−�t). (5)

The approximation above (modal approximation) is valid [21, 24, 51–55] for times larger
than the Heisenberg time tH and allows us to calculate a dynamical quantity such as P(t),
based on information about resonances. We note that sometimes it is instructive to represent
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the obtained results (5) in terms of the superposition of simple relaxation processes with
mesoscopically distributed relaxation times tφ [21, 24]:

P(t) ∼
∫

dtφ

tφ
e−t/tφP(tφ). (6)

The total current leaking out of the sample is then related to the survival probability by

J (t) = −∂P (t)

∂t
. (7)

The ability of constructing micro-lasers with chaotic resonators which produce high-power
directional emission [9] as much as the experimental realizations of the so-called random lasers
[10] where the feedback is due to multiple scattering within the medium (instead of being due
to mirrors), is another reason why statistical properties of resonances became fashionable in
our time. For the latter application, the knowledge of resonance width distribution can result
in the knowledge of the statistical properties of the lasing threshold.

The lasing threshold is given by the value of the smallest decay rate (i.e., smallest
resonance width) of all eigenmodes in the amplification window [56, 57]. The underlying
reasoning is that in the mode with the smallest decay rate the photons are created faster by
amplification than they can leave (decay) the sample. Assuming that the number of modes
K � 1 that lie in the frequency window where the amplification is possible, has resonance
widths � that are statistically independent, one gets for distribution of lasing thresholds P̃(�)

[56–58],

P̃(�) = KP(� � 1)

[
1 −

∫ �

0
P(�′ � 1) d�′

]K−1

(8)

where we have assumed that all K resonances are distributed according to P(� � 1). The
validity of this approximation was verified recently in the framework of the RMT [59]. An
important outcome of [25, 26] was that one can identify in diffusive systems traces of pre-
localized states in the latter distribution and consequently in P̃(�). This might shed some light
on recent experimental finding for random lasers which suggests the appearance of localized
modes in diffusive samples [60]. We note that if these localized modes are indeed related to
the pre-localized states then their size has to be much larger than the mean free path lmean by
the very nature of the non-linear sigma model which predicts them. Using this as a starting
observation, it was suggested recently (see [61] and references therein) that these localized
modes are related with the so-called ‘almost localized states’ supported by rare traps of sub-
mean free path size. These latter solutions are very sensitive to the microscopic details of
the system and thus are not universal as opposed to pre-localized states. Further research is
needed in order to clarify this point.

4.1. Ballistic regime

For ballistic/chaotic systems, RMT modelling is applicable. Its main advantage is its
universality. At the same time, universality means that the RMT modelling does not ‘know’
anything about the specific properties of the system under study. Since no physical parameters
(except the global symmetries) are plugged in the RMT machinery, it is clear that its predictions
are bounded by the existence of finite time scales. As far as transport properties are concerned,
an important requirement for the validity of RMT is the ergodic time to be smaller than the
average lifetime of a particle inside the chaotic cavity, in order for the particle to scatter off the
chaotic boundary several times ‘randomizing’ its motion, before escaping through the leads.



Statistics of resonances and delay times in random media 10767

10
-1

10
0

Γ
10

-2

10
-1

10
0

P(
Γ)

10
2

10
3Γ

10
-4

10
-2

P(
Γ)

(a)

(b)

~

~

~
~

Figure 1. Distributions of the resonance widths in the ballistic regime for two different models:
(a) the open kicked rotor [26] and (b) a fully connected quantum graph [6] with ‘generic’ vertex
scattering matrices. The numerical data (◦) are in excellent agreement with the RMT predictions
of equation (9) (dashed lines).

In the general case, Fyodorov and Sommers [12] proved that the distribution of scaled
resonance widths �̃ = �/� for the unitary random matrix ensemble, is given by

P(�̃) = (−1)M

γ (M)
�̃M−1 dM

d�̃M

(
e−�̃πq sinh(�̃π)

(�̃π)

)
, q = 1 + |〈S〉|2

1 − |〈S〉|2 (9)

where the parameter q controls the degree of coupling with the channels, 〈· · ·〉 indicates an
average over realizations and γ (·) is the γ -function. In figure 1 we report some representative
results from two models in the ballistic regime together with the theoretical prediction (9).
The excellent agreement is evident.

In the limit of M � 1, equation (9) reduces to the following expression [12]:

P(�̃) =



M

2π�̃2
, for

M

π(q + 1)
< �̃ <

M

π(q − 1)

0, otherwise
. (10)

The following argument provides some intuition about the form of resonance width
distribution (10). First we need to recall that the inverse of � represents the quantum lifetime
of a particle in the corresponding resonant state escaping into the leads. Moreover, we assume
that the particles are uniformly distributed inside the sample and spread ballistically until
they reach the boundary, where they are absorbed. Then we can associate the corresponding
lifetimes with the time tR ∼ 1/�R a particle needs to reach the boundaries, when starting
a distance R away. This classical picture can be justified for all states with � � �cl � �

where �cl is the classical decay rate which can be calculated numerically from the exponential
decay of the classical probability to stay inside the sample. (For RMT models we have the
so-called Moldauer–Simonius relation �cl ∼ �M ln(1 − |〈S〉|2) which gives us the lower
bound in equation (10) while for generic chaotic system �cl ∼ h̄(s/
)v where s is the width
of the opening, 
 is the total volume of the system and v is the velocity of the particle moving
inside the system.) The relative number of states that require a time t < tR in order to reach
the boundaries (or equivalently the number of states with � > �R) of a d-dimensional system
with linear dimension L, is

Pint(�R) ≡
∫ ∞

�R

P(�) d� ∼ V (tR)

Ld
= Ld − (L − R)d

Ld
(11)
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where V (tR) ∼ Ld − (L − R)d is the volume populated by all particles with lifetimes t < tR .
Assuming ballistic motion, i.e., R = vtR , we get from equation (11) in the limit where � � �cl

Pint(�R) ∼ 1

�R

(12)

which eventually leads to the RMT prediction equation (10).
Equations (9) and (10) are our starting point. In the next subsections, we will investigate

how deviations from these expressions arise as we increase the randomness of the system.

4.2. Diffusive regime

We start our presentation with the study of small resonance width distribution P(� < �).
The small resonances � < � can be associated with the existence of pre-localized states of
the closed system (for a discussion on pre-localized states, see [21, 25–27]). They consist
of a short-scale bump (where most of the norm is concentrated) and they decay rapidly in
a power-law fashion from the centre of localization [21, 24, 26, 27]. One then expects that
states of this type with localization centres at the bulk of the sample are affected very weakly
by the opening of the system at the boundaries. In first order perturbation theory, considering
the opening as a small perturbation we obtain [26, 62]

�

2
= 〈�|V †V |�〉 =

∑
n∈boundary

|�(n)|2 ∼ Ld−1|�(L)|2 (13)

where |�(L)|2 is the wavefunction intensity of a pre-localized state at the boundary and d is the
dimensionality of the sample. At the same time the distribution of wavefunction components
at the boundary was found to be [24]

P(θ) ∼ exp
(−A

(d)
β lnd(θ4−d)

)
, θ = 1/L(d−1)/2�(L) (14)

where the coefficient A(d) ∝ βD. Here β = 1(2) denotes the corresponding ensemble for
preserved (broken) time-reversal symmetry. Using equation (14) together with equation (13)
we obtain

P(� < �) ∼ exp
(−C

(d)
β lnd(1/�)

)
where Cβ ∝ βD. (15)

A detailed numerical analysis performed in [26, 62, 63] for the d = 2, 3 showed that the
above perturbative derivation is valid as well for relatively large resonances, i.e., � < � < �cl

where �cl = D/L2 is the inverse Thouless time. In figure 2 we report some numerical
data for the case d = 2 and compare with the theoretical predictions of equation (15). Let
us finally compare equation (15) with the results for ballistic systems (see equation (10)).
In the latter case a strip free of resonances is formed. In the diffusive regime, in contrast, there
are pre-localized states, which are weakly coupled to the leads. Due to their existence
the distribution of the small resonance widths has a non-trivial behaviour described by
equation (15).

Next we turn to the analysis of P(�) for � � �cl. Using the same argument that led to
equation (11), but assuming now diffusive spreading, i.e., R2 = D×t , we get (to leading-order
approximation with respect to �cl/�)

P(�) ∼
(

1

�

) 3
2

, (16)

valid for quasi one- [64], two- [25, 62] or three-dimensional [63] random media as long as the
leads are attached to the boundary of the sample. We conclude that the different power-law
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Figure 2. (a) The distribution of resonance widths (plotted as P(1/�) versus 1/�) for � < �cl
for two representative values of D for the two-dimensional kicked rotator in the diffusive regime
[26, 62]. The system size in all cases is L = 80. Full symbols correspond to broken TRS. The
solid lines are the best fits of equation (15) for β = 1(2) to the numerical data. (b) Coefficients Cβ

versus D for the same model as in (a) [26, 62]. The solid lines are the best fits to Cβ = AβD + Bβ

for β = 1(2). The ratio R = A2/A1 = 1.95 ± 0.03.

decay of equation (16) with respect to equations (10) and (12) is a result of the different nature
of the dynamics: ballistic versus diffusive.

Here it is interesting to point that a different way of opening the system might lead to a
different power-law behaviour for P(�). Such a situation can be realized if instead of opening
the system at the boundaries we introduce ‘one-site’ absorber (or one ‘lead’) somewhere inside
the sample. In such a case for d = 2 we have

Pint(�R) ∼ V (tR)

L2
= R2

L2
= DtR

L2
∼ �cl

�R

(17)

leading to the following power-law decay:

P(�) ∼
(

1

�

)2

. (18)

Similarly, the analogue of equation (18) in d = 3 is

P(�) ∼
(

1

�

)2.5

(19)

where we had to substitute V (tR) ∼ R3. The above results are valid for any number M of
‘leads’ such that the ratio M/Ld scales as 1/Ld .

If on the other hand we attach the open channel to the boundary (assume square geometry)
of a 3D sample we come out with a decay law which is the same as that given by equation (18).
This is due to the fact that the decay from the surface leads to a situation like that of a 2D
system.
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Figure 3. (a) The resonance width distribution P(�) for preserved TRS and D = 20.3 (◦) and
D = 33.5 (). The corresponding full symbols representP(�) for broken TRS and the same values
of D. The dashed (solid) vertical line marks the classical decay rate �cl for D = 20.3 (D = 33.5).
(b) The Pint(�) for a sample with nine leads (the lower curve). For comparison, we also plot the
Pint(�) for the same sample but when we open the system from the boundaries. The dashed lines
correspond to the theoretical predictions (16) and (18). The figure is taken from [62].

Figure 4. The resonance width distribution P(�̃) for the 3D Anderson model [63] and various
configurations of the open channels. The dashed lines are the corresponding theoretical predictions
given by equations (16), (18) and (19) (see the text). The figure is taken from [63].

In figure 3 we present some numerical calculations of the 2D kicked rotator [62] while in
figure 4 we present numerical data from the 3D Anderson model in the diffusive regime [63].
In all cases a comparison with the corresponding theoretical predictions (16), (18) and (19)
shows a nice agreement.

4.3. Localized regime

Various groups [63, 65–67] have investigated the resonance width distribution in the localized
regime during the past few years.
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In the region of exponentially narrow resonances � < �0 = exp(−2L/ξ) the distribution
was found to be log-normal, i.e.,

P(�̃) ∼ exp

[
−

(
4
L

ξ

)−1

ln2(�̃)

]
, � < �0. (20)

This is entirely analogous to the conductance distribution of localized systems. Equation (20)
essentially relies on two assumptions: first that eigenfunction components are randomly
distributed with no long-range correlations, and second that they are exponentially localized
with a normal distribution of localization lengths. This part of the distribution becomes
negligible at large L, because it comes of a fraction ∼ξ/L of the full set of all resonances.

Instead, the long resonance tails behave as

P(�̃) ∼
(

ξ

L

)
1

�̃
, �0 < � � 1/L. (21)

Equation (21) can be easily understood once employing equation (11). The new ingredient
now is that wavefunctions are exponentially localized, i.e., |�(r)| ∼ (1/ξd/2) exp(−r/ξ).
Using simple perturbation arguments, we have that (see equation (13)) � ∼ |�(r)|2 which
leads to the following approximation about the volume V (tR) ∝ Rd ∼ ξd lnd(ξd�).
Inserting this in equation (11) we get (to leading-order approximation with respect to ξ/L)
equation (21).

The large � region is essentially determined by the coupling to continuum, so it should
be model dependent. Nevertheless, it is reasonable to assume that the number of resonances
involved is constant, of order ξ , and therefore this extreme tail should subside at large L, at a
rate ∼ξ/L.

From equations (20) and (21) it becomes evident that P(�̃) depends on one parameter;
namely, the dimensionless parameter ξ/L. This dimensionless parameter is the cornerstone
of the 1-parameter scaling theory of localization [20]. It was shown in the past that
the dimensionless conductance g is a simple function of ξ/L. The above theoretical
considerations were tested [63, 66, 67] for various disordered and chaotic systems with
dynamical localizations and were found to describe nicely the numerical data. In figure 5 we
report some representative cases from the 3D Anderson model [63] in the localized regime.

Let us finally note that in the thermodynamic limit L → ∞ the probability of finding an
eigenstate at any finite distance from the boundary is equal to zero. Thus the distribution of
the resonance widths in this case approaches a delta-function centred at zero.

4.4. Criticality

The statistical properties of various observables at the MIT are one of the most intriguing
problems for many years now. Actually, despite the rich activity [18, 21, 24, 29, 35, 37, 39]
very few theoretical results are known. Here, we present consequences of the MIT on the
statistical properties of the rescaled resonance widths �̃. It was found [68] that P(�̃) follow a
new universal distribution, i.e., independent of the microscopic details of the random potential,
and number of channels M as can be seen from figure 6. For small resonance widths, i.e.,
�̃ < 1, it was found [63] that P(�̃) can be fitted nicely with a log-normal. This behaviour
resembles the one found for the small resonances in the localized regime (see equation (20))
although the character of wavefunctions here is much more complicated (multi-fractal versus
exponentially localized states). The simplicity of the functional form is quite intriguing and a
theoretical understanding is desirable. The sharp peak on the extreme right corresponding to
very large resonances is non-universal (model specific) and statistically insignificant since it
subsides as L increases like M/L3 ∼ L−1 (see also discussion in the previous section).
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Figure 5. P(�̃) in the localized regime for various combinations of W and L in the range �̃ � 1.
The log-normal decay is highlighted by Gaussian fits (full curves) whose maximum decreases
with increasing strength of disorder and also shifts towards smaller values of �̃. Keeping the
ratio ξ/L ≈ 0.136 fixed, coinciding distributions (full circles and open squares) are obtained for
different combinations of L, W . (b) For �̃ � 1 the anticipated power-law decay P(�̃) ∼ 1/�̃ is
observed (the dashed line) which becomes more robust for increasing strength of disorder. The
figure is taken from [63].
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Figure 7. The integrated distribution Pint(�̃) for the 3D Anderson model at MIT [63, 68]. The
dashed line is the theoretical prediction (22) corresponding to Pint(�̃) ∼ �̃−0.333 for our case.
The figure is taken from [63, 68].

On the other hand, the main part of P(�̃), corresponding to intermediate large resonances,
follows a power-law which is different from that found for ballistic, diffusive or localized
systems (see previous sections), i.e.,

P(�̃) ∼ g1/d
c �̃−(1+1/d). (22)

where gc is the Thouless conductance at criticality.
One can relate the power-law decay (22) to the anomalous diffusion at the MIT. Indeed,

at MIT the conductance of a d-dimensional disordered sample has a finite value gc ∼ 1.
Approaching the MIT from the metallic side one has g ∼ ET /�, where ET = D/R2 is the
Thouless energy, D is the diffusion coefficient, and � ∼ 1/Rd is the mean level spacing in
a d-dimensional sample with linear size R. This yields D ∼ gc/R

d−2 at critical disorder Wc.
Taking into account that D = R2/t , we get for the spreading of an excitation at the MIT

Rd(t) ∼ gct. (23)

A straightforward application of equation (11) then leads to equation (22). In figure 7 we
report some numerical results for the 3D Anderson model at MIT [63, 68]. An inverse power
law Pint(�̃) ∼ �̃−α is evident. The best fit to the numerical data yields α = 0.333 ± 0.005 in
accordance with equation (22).

In the original proposal of the scaling theory of localization, the conductance g is the
relevant parameter [20]. A manifestation of this statement is seen in equation (22) where
P0

int ≡ Pint(�̃0) is proportional to the conductance g. It is therefore natural to expect that P0
int

will follow a scaling behaviour for finite L (and for some �̃0 ∼ 1), which is similar to that
obeyed by the conductance g. It was therefore postulated in [63, 68] the following scaling
hypothesis,

P0
int(W,L) = f (L/ξ(W)), (24)

where ξ(W) is the correlation length at MIT. In the insulating phase (W > Wc) the
conductance of a sample with length L behaves as g(L) ∼ exp(−L/ξ) due to the exponential
localization of the eigenstates, and therefore we have g(L1) < g(L2) for L1 > L2. Based on
equation (22) we expect the same behaviour for P0

int, i.e., for every finite L1 > L2 we must
have P0

int(W,L1) < P0
int(W,L2). On the other hand, in the metallic regime (W < Wc)

we have that g(L) = DLd−2 and therefore for d > 2, we expect from equation (22)
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Figure 8. (a) P0
int(W, L) as a function of disorder strength W for different system sizes L provides

a means to determine the critical point Wc of the MIT (the vertical line at Wc = 16.5). (b) The
1-parameter scaling of P0

int(W, L) (equation (24)) is confirmed for various system sizes L and
disorder strengths W using the box distribution. The figure is taken from [63, 68].

P0
int(W,L1) > P0

int(W,L2). Thus, the critical point is that at which the size effect changes its
sign, or in other words, the point where all curves P0

int(W,L) for various L cross. One can
reformulate the last statement by stating that in the thermodynamic limit L → ∞ at W = Wc

the number of resonances with width larger than the mean level spacing goes to a constant.
In figure 8(a), we show the evolution of P0

int(W) for different L using the box distribution
[63, 68]. From this analysis the critical disordered strength W = Wc = 16.5 ± 0.5 was
determined in [63, 68] in agreement with other calculations [18, 40]. A further verification
of the scaling hypothesis (24) is shown in figure 8(b) where the same data are reported as a
function of the scaling ratio L/ξ . All points collapse on two separate branches for W < Wc

and W > Wc.

5. Delay times

We turn now to the analysis of Wigner and proper delay times as defined in equation (4)
above. Their knowledge is relevant for experiments on frequency and parameter-dependent
transmission through chaotic microwave cavities [8, 32] or semiconductor quantum dots with
ballistic point contacts [69]. Also, it can be shown that they are related to the distribution of
reflection coefficients R in the presence of weak absorption.

Absorption is one of the main ingredients in actual experimental situations and has
gained much interest in the past few years (see [43] and [13] in this volume). Unfortunately,
a comprehensive treatment of absorption is still lacking. There are only very few reported
analytical results for the distributionP(R) of the reflection coefficient R = S†S in the presence
of absorption and all of them are within the regime of applicability of RMT [43, 70, 71], except
the recent work [72, 73], where quasi-1D geometry in the localized regime is considered as
well.

Specifically, in the weak absorption limit it was shown [8, 70] that the following relation
holds,

Rq = 1 − τq/τa, (25)

where τq are the proper delay times (eigenvalues of the Wigner–Smith operator) and 1/τa is
the absorption rate. Thus the knowledge of P(R) reduces to the calculation of the distribution
of proper delay times P(τq) [70].
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For one channel the distribution of delay times is now quite well understood and studied
in all regimes. Quite recently [74] the existence of a very general relation between the delay
time distribution and the distribution of eigenfunction intensities was shown,〈

τ̃−k
W

〉 = 〈yk+1〉, (26)

where y = 
|ψn(r)|2 is the local eigenfunction intensity and τ̃W = τW�/2π . Equation (26)
leads to the following functional relation between the two distributions:

P̃W(τ̃W ) = 1

τ̃ 3
W

Py

(
1

τ̃W

)
. (27)

On the one hand, this relation allows us to use the existent knowledge on eigenfunction statistics
[21] to provide explicit expressions for delay times distributions in various regimes of interest.
On the other hand, since phase shifts and delay times are experimentally measurable quantities,
especially in the one-channel reflection experiment [8, 70, 75–77], this relation opens a new
possibility for experimental study of eigenfunctions.

5.1. Ballistic regime

We start again our presentation from the ballistic regime. The notion of proper delay times
goes back more than 40 years to the seminar paper of Smith [44]. Although many authors have
worked on this problem [12, 78–82], only recently its probability distribution was calculated.
It was shown in [83], using standard RMT methods, that the distribution of inverse proper
delay times is given by the Laguerre ensemble from random matrix theory

P
(
τ−1

1 , . . . , τ−1
M

) ∝
∏
i<j

∣∣τ−1
i − τ−1

j

∣∣β ∏
k

∣∣(τ−1
i

)βM/2
exp−β2πh̄τ−1

k /2� . (28)

As a matter of fact from equation (28) one can evaluate the distribution of Wigner delay
times τW , which for large values decays as a power law

P(τW ) ∝ 1

τ
2+βM/2
W

(29)

in agreement with an earlier conjecture by Fyodorov and Sommers [12].
Specifically for M = 1 the distribution of Wigner delay times was calculated even in the

crossover regime between unitary (β = 2) and orthogonal (β = 1) symmetry classes and was
found to be [84]

PW(τ̃W ) = 1

2τ̃ 3
w

∫ 1

−1
dλ

∫ ∞

1
dλ2 λ2

2 e−X2(λ2
2−1) e−λ2

2/τ̃W I0


λ2

√
λ2

2 − 1

τ̃W


 T2(λ, λ2), (30)

T2(λ, λ2) = 2X2
[
(1 − λ2) e−α + λ2

2(1 − e−α)
] − (1 − e−α), (31)

where α = X2(1 − λ2), I0(z) stands for the modified Bessel function, and X is a crossover
driving parameter. For pure symmetries, equation (30) leads to [12, 74, 78]

P(τ̃W ) = [(β/2)β/2/γ (β/2)]τ̃−β/2−2
W exp−β/2τ̃W . (32)

The following simple argument can be used in order to understand the tails of the Wigner
delay time distribution equation (29). Our starting point is the well-known relation

τW (E) =
M∑

n=1

�n

(E − En)2 + �2
n

/
4

(33)

which connects the Wigner delay times and the poles of the S-matrix.
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Figure 9. Schematic plot for the Wigner delay time as a function of energy according to
equation (33).

It is evident that large times τW (E) ∼ �−1
n correspond to the cases when E � En

and �n � 1. In the neighbourhood of these points, τ(E) can be approximated by a single
Lorentzian (33). Sampling the energies E with step �E � �min we calculate the number of
points for which the time delay is larger than some fixed value τ (see figure 9). Assuming that
the contribution of each Lorentzian is proportional to its width one can estimate this number
as

∑
�n<1/τ �n/�E. For the integrated distribution of delay times in the limit �E → 0 we

obtain

Pint(τW ) ∼
∫ 1/τW

d� P(�)� (34)

and by substituting the small resonance width asymptotic given by equation (9) we come out
with the power-law expression (29).

5.2. Diffusive regime

Using the general relation (27) for the case of M = 1, we find for P(τW ) [74]

Pw(τ̃W ) = e−1/2τ̃W

√
2πτ̃

5/2
W

[
1 +

κ

2

(
3

2
− 3

τ̃W

+
1

2τ̃ 2
W

)
+ · · ·

]
β = 1,

Pw(τ̃W ) = e−1/τ̃W

τ̃ 3
W

[
1 +

κ

2

(
2 − 4

τ̃W

+
1

τ̃ 2
W

)
+ · · ·

]
β = 2,

Pw(τ̃W ) = 4 e−2/τ̃W

τ̃ 4
W

[
1 +

κ

2

(
3 − 6

τ̃W

+
2

τ̃ 2
W

)
+ · · ·

]
β = 4,

(35)

where the parameter κ ∝ g−1 is inversely proportional to the dimensionless conductance
g. The proportionality coefficient depends essentially on the sample geometry and on the
coordinates of the lead. Note that in the limit of g → ∞ we recover the RMT results
discussed in the previous section.

Equation (35) holds for relatively large delay times τ̃W � √
κ , while in the opposite case

the distribution is dominated by the existence of the anomalously localized states and has the



Statistics of resonances and delay times in random media 10777

10 20 30 40 50

ln
2
(τq)

10
-7

10
-5

10
-3

10
-1

P
(τ

q)
100

τq

10
-4

10
-3

10
-2

P
(τ

q)

~τ−1.5

Figure 10. The proper delay times distribution P(τq ) for a 2D kicked rotator [26] with diffusive
coefficients D = 20.3 (◦) and D = 29.8 (�). The ‘•’ corresponds to D = 20.3 but now with
broken TRS. The dashed lines have slopes equal to Cβ extracted from the corresponding P(�) (see
figure 8). In the inset, we report P(τq ) for moderate values of τq in a double logarithmic scale.
The figure is taken from [26, 62].

following behaviour for dimensionality d = 2, 3 [74]:

PW(τ̃W ) ∼ exp

(
β

2

{
− 1

τ̃W

+ κ
1

τ̃ 2
W

+ · · ·
})

, κ � τ̃W �
√

κ, (36)

PW(τ̃W ) ∼ exp(−Cd lnd(1/τ̃W )), τ̃W � κ. (37)

The coefficient Cd depends not only on the dimensionality of the system, but on the
symmetry parameter β as well (for a discussion on these issues, see [24, 26, 74] and references
therein).

For many open channels M � 1 there are no quantitative theoretical results yet. However,
one can employ qualitative arguments which together with numerical findings can allow us
to understand the resulting distributions. Indeed, substituting in equation (34) the small
resonance width asymptotic for the P(�) given by equation (15) we come out with the
following log-normal law for the large τ regime

P
(
τW > �−1

cl

) ∼ exp(−Cβ lnd τ ) (38)

where the coefficient Cβ is the same as the one given in equation (15). This prediction has
been tested numerically in [25, 26] for the case of a 2D diffusive system, and the numerical
findings (see figure 10) were shown to be in excellent agreement.

Now we estimate the behaviour of P(τW ) for τW � �−1
cl . In this regime many short-

living resonances contribute to the sum (33). We may therefore consider τ as a sum of many
independent positive random variables each of the type τn = �nxn, where xn = δE−2

n .
Assuming further that δEn are uniformly distributed random numbers we find that the
distribution P(xn) has the asymptotic power-law behaviour 1

/
x

3/2
n . As a next step we find that

the distribution P(τn) decays asymptotically as 1
/
τ

3/2
n where we use that P(�n) ∼ 1

/
�

3/2
n .

Then the corresponding P(τ ) is known to be a stable asymmetric Levy distribution Lµ,1(τ )

of index µ = 1/2 [85] which has the following form at the origin,

P
(
τ � �−1

cl

) ∼ 1

τ 3/2
exp(−σ/τW ), (39)
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Figure 11. Distribution of the delay timesP(τW ) for the 1D Anderson model with on-site potential,
uniformly distributed between [−0.1; 0.1] and wavenumber k = √

π . The dashed line corresponds
to (40). In the inset, we present the same data in a log–log plot. The figure is taken from [87].

where σ is some constant of order unity. Simple theoretical arguments [12] suggest that this
part of the distribution of the Wigner delay times is the same as in RMT considerations. This
is in contrast with the large delay times (see equation (38)) where RMT considerations lead to
a power-law decay (29).

Since τW = ∑M
i=1 τq , we expect the behaviour of the distribution of proper delay

times P(τq) to be similar to P(τ ) for large values of the arguments (for τ � 1 we have
τ ∼ τmax

q ). The above predictions were verified numerically for a 2D diffusive system [26],
while unpublished results [63] show that the same law applies for a 3D diffusive system
as well. We point out here that the asymptotic behaviour P(τ ) ∼ 1/τ 3/2 emerges also for
chaotic/ballistic systems where the assumption of uniformly distributed δEn is the only crucial
ingredient (see, for example, [12]).

5.3. Localized regime

In a series of recent works [86–89] it was found that for 1D systems with M = 1 and weak
disorder the delay time distribution is (see figure 11)

P(τW ) = ξ

vτ 2
W

exp(−ξ/vτW ), (40)

where ξ is the localization length and v = |∂E/∂k| is the group velocity. Equation (40)
takes its maximum value at τmax

W = 0.5ξ/v, indicating that the most probable trajectory that
a particle travels (forth and back) before it scatters outside the sample is the mean free path
lmean = ξ/4. As τW → ∞,P(τW ) shows a long time tail which goes as 2τmax

W

/
τ 2
W . This

leads to a logarithmic divergence of the average value of τW , indicating the possibility of
the particle traversing the infinite sample before being totally reflected. As was indicated in
[87–89] this is another manifestation of the fact that in the localized regime the conductance
shows log-normal distribution due to the presence of Azbel resonances.

We note that although the distribution for small delay times depends on disorder strength
and possibly on the number of channels M, the long time tail is universal. As a matter of fact
one can understand the long time power-law behaviour by employing the argument leading to
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equation (34). Indeed by substituting the resonance distribution in the localized regime (21)
we get again P(τW ) ∝ 1

/
τ 2
W independent of the number of channels M. The validity of this

calculation was checked recently [63] for the 3D Anderson model in the localized regime and
for M � 1 channels.

The above expression (40) does not contain the length of the chain, indicating that this
intermediate asymptotics of the delay time distribution is related to the resonance width
distribution, which is dominated by the electron escape rate from the resonant state into the
nearest reservoir and for L → ∞ is exact for any delay time. However, the finite length L
determines a cutoff τW ∼ eL/ξ for this universal behaviour, and for larger delay times we
find [88]

P(τW ) ∝ exp(−L/ξ)τ
−(1+ ξ

L
ln τW )

W , τW > eL/ξ . (41)

We mark that equation (41) was recently derived in [72] for the case of quasi-1D random
systems.

5.4. Criticality

Recently, an intensive activity to understand P(τW ) for systems at critical conditions was
undertaken in [68, 72, 74, 90]. The activity was mainly concentrated in the simplest scattering
set-up of one open channel attached to the system of linear size L. As a result, an anomalous
scaling of inverse moments of τW with the system size L was reported [74, 90] and specific
predictions linking the scaling exponents and the multi-fractal properties of eigenfunctions
of the corresponding closed system were made. Specifically, it was found that the inverse
moments of Wigner delay times

〈
τ

−q

W

〉
scale as〈

τ
−q

W

〉 ∝ L−f (q), f (q) = qDq+1 (42)

where 〈·〉 stands for an ensemble average. However, it was found that this relation is extremely
fragile [90]; namely, it holds for channels attached to a typical position inside the sample.
This excludes the standard scattering set-up where the channel is attached to the edge of the
sample.

In figure 12 we summarize the results of the investigation undertaken in [90] where the
analysis was performed for the power banded random matrix (PBRM) model, whose elements
are independent random variables Hij with the variance decreasing in a power-law fashion:
〈(Hij )

2〉 = [1 + (|i − j |/b)2α]−1. For α = 1 this model shows critical behaviour and the
fractal dimensions Dq of the eigenfunctions depend on the parameter b and can be calculated
analytically [21, 91]. In figure 12(a) we report the results for the case with a channel attached
to the boundary. We see that the numerical data deviate from the theoretical predictions for
any value of b. Instead, the agreement is very good for the case where the channel is attached
to the bulk of the sample (see figure 12(b)). In the latter case, the channel is attached to a
representative position in the sample. These results will provide a new method for evaluating
the fractal dimensions Dq in microwave and light wave experiments where τW can be extracted
even in the presence of weak absorption. At the same time the appearance of the anomalous
scaling of

〈
τ

−q

W

〉
can be used as a criterion for detecting MIT.

6. Quasi-periodic systems at criticality

Periodic and random media cover only the two extremes of the rich spectrum of complex
systems. Quasi-periodic systems [92–100] form an intermediate regime and have fascinating
properties. In these deterministic non-periodic structures translational order is absent. In their
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Figure 12. Scaling properties of inverse moments of delay times for the PBRM at criticality [90].
We report ln f (q − 1) as a function of q for a channel attached (a) to the boundary and (b) to the
bulk of the sample when |〈S〉| ∼ 0 (full symbols). In (b) we also show ln f (q − 1) for |〈S〉| ∼ 0.5
(open symbols). The curves are the theoretical predictions of equation (42). The figure is taken
from [90].

one-dimensional tight-binding formulation they are described mathematically by the following
Hamiltonian,

ψn+1 + ψn−1 + Wnψn = Eψn, (43)

where Wn is given by some quasi-periodic sequence. Among the most well-studied
representatives of this class are the Harper model [92, 97–99] and Fibonacci quasi-crystals
[93–97, 99, 100]. These two systems have been the subject of an extensive theoretical and
experimental effort in the last 20 years.

The Harper model is described by the tight-binding Hamiltonian (43) with the on-site
potential given by Wn = λ cos(2πφn). This system effectively describes a particle in a
two-dimensional periodic potential in a uniform magnetic field with φ = a2eB/hc being the
number of flux quanta in a unit cell of area a2. When φ is an irrational number, the period
of the effective potential Wn is incommensurate with the lattice period. The states of the
corresponding closed system are extended when λ < 2, and the spectrum consists of bands
(the ballistic regime). For λ > 2 the spectrum is point-like and all states are exponentially
localized (the localized regime). The most interesting case corresponds to λ = 2 of the MIT.
At this point, the spectrum is a Cantor set with fractal (box counting) dimension DE

0 � 0.5
[92, 97, 99]. The spectral properties of the Harper model were recently investigated in
microwave experiments [98]. Similar theoretical attention was also given to the study of
eigenfunctions [92, 97] which show self-similar fluctuations on all scales.

The Fibonacci binary quasi-crystal attracted much interest as well. Here the potential Wn

only takes the two values +W and −W arranged in a Fibonacci sequence [93]. It was shown
[93, 95, 96] that the spectrum is a Cantor set with zero Lebesgue measure for all W > 0.
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Figure 13. (a) Pint(�) of the Harper model (λ = 2) for three approximants of σG, σ1 = 987
1597 ; σ2 =

1597
2584 ; σ3 = 2584

4181 . An inverse power law Pint(�) ∼ �1−α is evident. A least-squares fit yields
α ≈ 1.5 in accordance with DE

0 � 0.5 and equation (44). As is seen the lower cutoff of the scaling
region decreases for higher approximants. (b) Pint(τ ) of the Harper model (λ = 2) for three
approximants of the golden mean σ1 = 233

377 ; σ2 = 987
1597 ; and σ3 = 832 040

1346 269 . An inverse power law
Pint(τ ) ∼ τ 1−γ is evident. A least-squares fit yields γ ≈ 1.5 in accordance with DE

0 � 0.5 and
equation (44). As is seen, the upper cutoff of the scaling region increases for higher approximants.
The figure is taken from [99].

The first experimental realization of Fibonacci super-lattices was reported in [94] while their
optical analogues were realized in [96, 100].

In [99] we presented consequences of the fractal nature of the spectrum in open quasi-
periodic systems. We considered open systems with one channel (the simplest possible
scattering problem) and reported the appearance of a new type of resonance width and delay
time statistics. These distributions show inverse power-law behaviour dictated by the fractal
dimension DE

0 of the spectrum. Specifically, it was found that the probability distributions
of resonance widths P(�) and of delay times P(τ ) when generated over different energies1,
behave as

P(�) = �−α α = 1 + DE
0

P(τW ) = τ
−γ

W γ = 2 − DE
0 .

(44)

Note that for DE
0 = 0 we recover the results (21) and (40) of the point-like spectrum

(
DE

0 = 0
)

corresponding to a localized system.

1 We note that distributions generated over different energies wash out multi-fractal wavefunction properties of a
specific eigenstate as opposed to the calculation of section 5.4.
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W

D0
E

α−1

2− γ

Figure 14. Power-law exponents α, γ (plotted as α − 1 and 2 − γ ) of the resonance widths and of
the delay time distributions, respectively, as a function of the potential strength W for the Fibonacci
model. We also plot the fractal dimension DE

0 of the spectrum (the solid line is to guide the eye).
Our numerical data show that α and γ are related to the Hausdorff dimension DE

0 according to
equation (44). The figure is taken from [99].

The connection between the exponents α, γ and the fractal dimension DE
0 of the closed

system calls for an argument for its explanation. The following heuristic argument [87],
similar in spirit to that used in section 4.1, provides some understanding of the power laws
(44). We consider successive rational approximants φi = pi/qi of the continued fraction
expansion of φ. On a length scale qi the periodicity of the potential is not manifest and we
may assume that the variance of a wave packet spreads as var(t) ∼ t2DE

0 [97]. We attach
the lead at the end of the segment qi which results in broadening the energy levels by a
width �. The maximum time needed for a particle to recognize the existence of the leads is

τqi
∼ q

1/DE
0

i . The latter is related to the minimum level width �qi
∼ 1/τqi

. The number of
states living in the interval is ∼qi and thus determines the number of states with resonance
widths � > 1/τqi

. Thus Pint
(
�qi

) ∼ qi ∼ �−DE
0 . By repeating the same argument for higher

approximants φi+1 = pi+1/qi+1 we conclude that P(�) ∼ �−(1+DE
0 ), in agreement with (44).

Furthermore, use of equation (34) of section 5.1 results in the distribution (44) for the Wigner
delay times. The numerical results (see figures 13 and 14) obtained for the Harper and the
Fibonacci models in [87] verify the validity of the above arguments. Nevertheless, a rigorous
mathematical proof is still lacking.

7. Conclusions

In this paper, we summarized the recent activity on the statistical properties of resonances
and delay times of random/chaotic systems and analysed the deviations from the universal
RMT predictions due to effects related to Anderson localization, diffusion and criticality.
We have found that the tails of the resonance width distribution P(�) reflect the nature of
the dynamics associated with the corresponding closed system as it is defined by the second
moment of a spreading wave packet (ballistic, diffusive, critical, or localized). Instead,
the origin, corresponding to small resonance widths, is dictated by anomalously localized
states. Moreover, we have found that in the diffusive regime P(�) is affected by the channel
‘configuration’ (position and relative number) as well, in contrast to the localized regime. At
MIT the resonance width distribution is universal and can be used to formulate a scaling theory
of localization.
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Localization phenomena affect also the delay times leaving their traces to the distributions
P(τ ). For scattering systems attached to one open channel, we have a very good quantitative
understanding of P(τ ) for all regimes. A general expression connects this distribution with the
distribution of wavefunction intensities, the latter being well studied during the past few years.
This connection allows us to use the experimentally accessible delay times in order to probe
properties of wavefunctions, like multi-fractality, which are not easily measured. For many
open channels, ample numerical data supported by theoretical arguments allow us to estimate
the shape of the distribution of delay times and get a qualitative understanding of the traces
of localization. Nevertheless, it remains a challenge to get some quantitative expressions as
well.

The last section of this paper is devoted to the 1D quasi-periodic systems at criticality.
The corresponding closed systems show fascinating properties like spectral and wavefunctions
fractality. We reviewed the traces of spectral fractality to the distributions of the resonance
widths P(�), and of delay times P(τ ). Based on numerical results and theoretical arguments,
it is shown that both quantities decay algebraically with powers which are related to the fractal
(box counting) dimension DE

0 of the spectrum of the closed system.
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[31] Gräf H-D et al 1992 Phys. Rev. Lett. 69 1296

Alt H et al 1995 Phys. Rev. Lett. 74 62
[32] Kudrolli A, Kidambi V and Sridhar S 1995 Phys. Rev. Lett. 75 822
[33] Pradhan P and Sridhar S 2000 Phys. Rev. Lett. 85 2360
[34] Chalker J T, Kravtsov V E and Lerner I V 1996 Pis. Zh. Eksp. Teor. Fiz. 64 355

Chalker J T, Kravtsov V E and Lerner I V 1996 JETP Lett. 64 386
[35] Wegner F 1980 Z. Phys. B 36 209
[36] Schreiber M and Grussbach H 1991 Phys. Rev. Lett. 67 607

Parshin D A and Schober H R 1999 Phys. Rev. Lett. 83 4590
Mildenberger A, Evers F and Mirlin A D 2002 Phys. Rev. B 66 033109

[37] Evers F and Mirlin A D 2000 Phys. Rev. Lett. 84 3690
Cuevas E, Ortuno M, Gasparian V and Perez-Garrido A 2002 Phys. Rev. Lett. 88 016401
Varga I 2002 Phys. Rev. B 66 094201
Varga I and Braun D 2000 Phys. Rev. 61 R11859

[38] Chalker J T and Daniell G J 1988 Phys. Rev. Lett. 61 593
Huckestein B and Klesse R 1999 Phys. Rev. B 59 9714

[39] Braun D, Hofstetter E, Montambaux G and MacKinnon A 2001 Phys. Rev. Lett. 64 155107
Slevin K and Ohtsuki T 1999 Phys. Rev. Lett. 82 382
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[78] Gopar V A, Mello P A and Büttiker M 1996 Phys. Rev. Lett. 77 3005
[79] Lewenkopf C H and Weidenmüller H A 1991 Ann. Phys., NY 212 53
[80] Seba P, Zyczkowski K and Zakrewski J 1996 Phys. Rev. E 54 2438
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